Copied to
clipboard

G = C42.191C23order 128 = 27

52nd non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.191C23, Q8⋊C816C2, C4⋊C4.291D4, C4.Q161C2, (C2×D4).24D4, C85D4.9C2, C4⋊C8.5C22, (C2×Q8).45D4, C4.55(C4○D8), C4.D8.1C2, C4⋊Q8.12C22, (C4×C8).243C22, (C4×Q8).24C22, C2.19(D44D4), C41D4.15C22, C4.59(C8.C22), C22.157C22≀C2, C2.12(D4.7D4), C22.53C24.1C2, (C2×C4).948(C2×D4), SmallGroup(128,362)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — C42.191C23
C1C2C22C2×C4C42C4×Q8C22.53C24 — C42.191C23
C1C22C42 — C42.191C23
C1C22C42 — C42.191C23
C1C22C22C42 — C42.191C23

Generators and relations for C42.191C23
 G = < a,b,c,d,e | a4=b4=d2=1, c2=e2=a2, ab=ba, cac-1=dad=a-1, eae-1=ab2, cbc-1=dbd=ebe-1=b-1, dcd=ac, ece-1=bc, de=ed >

Subgroups: 264 in 109 conjugacy classes, 34 normal (12 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4×C8, Q8⋊C4, C4⋊C8, C2.D8, C4×D4, C4×Q8, C22.D4, C4.4D4, C41D4, C4⋊Q8, C2×SD16, Q8⋊C8, C4.D8, C4.Q16, C85D4, C22.53C24, C42.191C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C22≀C2, C4○D8, C8.C22, D4.7D4, D44D4, C42.191C23

Character table of C42.191C23

 class 12A2B2C2D2E4A4B4C4D4E4F4G4H4I4J4K4L8A8B8C8D8E8F8G8H
 size 111188222244444881644448888
ρ111111111111111111111111111    trivial
ρ211111111111111111-1-1-1-1-1-1-1-1-1    linear of order 2
ρ31111-1-111111-11-111-1-11111-1-111    linear of order 2
ρ41111-1-111111-11-111-11-1-1-1-111-1-1    linear of order 2
ρ51111-1-11111-11-111-11-1111111-1-1    linear of order 2
ρ61111-1-11111-11-111-111-1-1-1-1-1-111    linear of order 2
ρ71111111111-1-1-1-11-1-111111-1-1-1-1    linear of order 2
ρ81111111111-1-1-1-11-1-1-1-1-1-1-11111    linear of order 2
ρ92222-22-2-2-2-20000200000000000    orthogonal lifted from D4
ρ10222200-2-2220-20-2-202000000000    orthogonal lifted from D4
ρ1122220022-2-2-20-20-220000000000    orthogonal lifted from D4
ρ1222222-2-2-2-2-20000200000000000    orthogonal lifted from D4
ρ13222200-2-2220202-20-2000000000    orthogonal lifted from D4
ρ1422220022-2-22020-2-20000000000    orthogonal lifted from D4
ρ1522-2-2002-200-2i02i00000-2--2-2--200-22    complex lifted from C4○D8
ρ162-2-220000-220-2i02i0000--2-2-2--22-200    complex lifted from C4○D8
ρ172-2-220000-2202i0-2i0000-2--2--2-22-200    complex lifted from C4○D8
ρ1822-2-2002-2002i0-2i00000-2--2-2--2002-2    complex lifted from C4○D8
ρ192-2-220000-2202i0-2i0000--2-2-2--2-2200    complex lifted from C4○D8
ρ202-2-220000-220-2i02i0000-2--2--2-2-2200    complex lifted from C4○D8
ρ2122-2-2002-2002i0-2i00000--2-2--2-200-22    complex lifted from C4○D8
ρ2222-2-2002-200-2i02i00000--2-2--2-2002-2    complex lifted from C4○D8
ρ234-44-40000000000000022-2-20000    orthogonal lifted from D44D4
ρ244-44-400000000000000-2-2220000    orthogonal lifted from D44D4
ρ254-4-4400004-40000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ2644-4-400-44000000000000000000    symplectic lifted from C8.C22, Schur index 2

Smallest permutation representation of C42.191C23
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 18 15 5)(2 19 16 6)(3 20 13 7)(4 17 14 8)(9 62 56 59)(10 63 53 60)(11 64 54 57)(12 61 55 58)(21 31 33 26)(22 32 34 27)(23 29 35 28)(24 30 36 25)(37 44 45 50)(38 41 46 51)(39 42 47 52)(40 43 48 49)
(1 39 3 37)(2 38 4 40)(5 42 7 44)(6 41 8 43)(9 36 11 34)(10 35 12 33)(13 45 15 47)(14 48 16 46)(17 49 19 51)(18 52 20 50)(21 53 23 55)(22 56 24 54)(25 57 27 59)(26 60 28 58)(29 61 31 63)(30 64 32 62)
(2 4)(5 18)(6 17)(7 20)(8 19)(9 53)(10 56)(11 55)(12 54)(14 16)(21 33)(22 36)(23 35)(24 34)(25 27)(30 32)(37 40)(38 39)(41 52)(42 51)(43 50)(44 49)(45 48)(46 47)(57 58)(59 60)(61 64)(62 63)
(1 29 3 31)(2 25 4 27)(5 35 7 33)(6 24 8 22)(9 46 11 48)(10 39 12 37)(13 26 15 28)(14 32 16 30)(17 34 19 36)(18 23 20 21)(38 54 40 56)(41 64 43 62)(42 58 44 60)(45 53 47 55)(49 59 51 57)(50 63 52 61)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,18,15,5)(2,19,16,6)(3,20,13,7)(4,17,14,8)(9,62,56,59)(10,63,53,60)(11,64,54,57)(12,61,55,58)(21,31,33,26)(22,32,34,27)(23,29,35,28)(24,30,36,25)(37,44,45,50)(38,41,46,51)(39,42,47,52)(40,43,48,49), (1,39,3,37)(2,38,4,40)(5,42,7,44)(6,41,8,43)(9,36,11,34)(10,35,12,33)(13,45,15,47)(14,48,16,46)(17,49,19,51)(18,52,20,50)(21,53,23,55)(22,56,24,54)(25,57,27,59)(26,60,28,58)(29,61,31,63)(30,64,32,62), (2,4)(5,18)(6,17)(7,20)(8,19)(9,53)(10,56)(11,55)(12,54)(14,16)(21,33)(22,36)(23,35)(24,34)(25,27)(30,32)(37,40)(38,39)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(57,58)(59,60)(61,64)(62,63), (1,29,3,31)(2,25,4,27)(5,35,7,33)(6,24,8,22)(9,46,11,48)(10,39,12,37)(13,26,15,28)(14,32,16,30)(17,34,19,36)(18,23,20,21)(38,54,40,56)(41,64,43,62)(42,58,44,60)(45,53,47,55)(49,59,51,57)(50,63,52,61)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,18,15,5)(2,19,16,6)(3,20,13,7)(4,17,14,8)(9,62,56,59)(10,63,53,60)(11,64,54,57)(12,61,55,58)(21,31,33,26)(22,32,34,27)(23,29,35,28)(24,30,36,25)(37,44,45,50)(38,41,46,51)(39,42,47,52)(40,43,48,49), (1,39,3,37)(2,38,4,40)(5,42,7,44)(6,41,8,43)(9,36,11,34)(10,35,12,33)(13,45,15,47)(14,48,16,46)(17,49,19,51)(18,52,20,50)(21,53,23,55)(22,56,24,54)(25,57,27,59)(26,60,28,58)(29,61,31,63)(30,64,32,62), (2,4)(5,18)(6,17)(7,20)(8,19)(9,53)(10,56)(11,55)(12,54)(14,16)(21,33)(22,36)(23,35)(24,34)(25,27)(30,32)(37,40)(38,39)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(57,58)(59,60)(61,64)(62,63), (1,29,3,31)(2,25,4,27)(5,35,7,33)(6,24,8,22)(9,46,11,48)(10,39,12,37)(13,26,15,28)(14,32,16,30)(17,34,19,36)(18,23,20,21)(38,54,40,56)(41,64,43,62)(42,58,44,60)(45,53,47,55)(49,59,51,57)(50,63,52,61) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,18,15,5),(2,19,16,6),(3,20,13,7),(4,17,14,8),(9,62,56,59),(10,63,53,60),(11,64,54,57),(12,61,55,58),(21,31,33,26),(22,32,34,27),(23,29,35,28),(24,30,36,25),(37,44,45,50),(38,41,46,51),(39,42,47,52),(40,43,48,49)], [(1,39,3,37),(2,38,4,40),(5,42,7,44),(6,41,8,43),(9,36,11,34),(10,35,12,33),(13,45,15,47),(14,48,16,46),(17,49,19,51),(18,52,20,50),(21,53,23,55),(22,56,24,54),(25,57,27,59),(26,60,28,58),(29,61,31,63),(30,64,32,62)], [(2,4),(5,18),(6,17),(7,20),(8,19),(9,53),(10,56),(11,55),(12,54),(14,16),(21,33),(22,36),(23,35),(24,34),(25,27),(30,32),(37,40),(38,39),(41,52),(42,51),(43,50),(44,49),(45,48),(46,47),(57,58),(59,60),(61,64),(62,63)], [(1,29,3,31),(2,25,4,27),(5,35,7,33),(6,24,8,22),(9,46,11,48),(10,39,12,37),(13,26,15,28),(14,32,16,30),(17,34,19,36),(18,23,20,21),(38,54,40,56),(41,64,43,62),(42,58,44,60),(45,53,47,55),(49,59,51,57),(50,63,52,61)]])

Matrix representation of C42.191C23 in GL4(𝔽17) generated by

0100
16000
0012
001616
,
0100
16000
0010
0001
,
12500
5500
0007
00120
,
1000
01600
0010
001616
,
13000
0400
00130
00013
G:=sub<GL(4,GF(17))| [0,16,0,0,1,0,0,0,0,0,1,16,0,0,2,16],[0,16,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[12,5,0,0,5,5,0,0,0,0,0,12,0,0,7,0],[1,0,0,0,0,16,0,0,0,0,1,16,0,0,0,16],[13,0,0,0,0,4,0,0,0,0,13,0,0,0,0,13] >;

C42.191C23 in GAP, Magma, Sage, TeX

C_4^2._{191}C_2^3
% in TeX

G:=Group("C4^2.191C2^3");
// GroupNames label

G:=SmallGroup(128,362);
// by ID

G=gap.SmallGroup(128,362);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,422,184,1123,570,521,136,2804,1411,718,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=1,c^2=e^2=a^2,a*b=b*a,c*a*c^-1=d*a*d=a^-1,e*a*e^-1=a*b^2,c*b*c^-1=d*b*d=e*b*e^-1=b^-1,d*c*d=a*c,e*c*e^-1=b*c,d*e=e*d>;
// generators/relations

Export

Character table of C42.191C23 in TeX

׿
×
𝔽