p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.191C23, Q8⋊C8⋊16C2, C4⋊C4.291D4, C4.Q16⋊1C2, (C2×D4).24D4, C8⋊5D4.9C2, C4⋊C8.5C22, (C2×Q8).45D4, C4.55(C4○D8), C4.D8.1C2, C4⋊Q8.12C22, (C4×C8).243C22, (C4×Q8).24C22, C2.19(D4⋊4D4), C4⋊1D4.15C22, C4.59(C8.C22), C22.157C22≀C2, C2.12(D4.7D4), C22.53C24.1C2, (C2×C4).948(C2×D4), SmallGroup(128,362)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.191C23
G = < a,b,c,d,e | a4=b4=d2=1, c2=e2=a2, ab=ba, cac-1=dad=a-1, eae-1=ab2, cbc-1=dbd=ebe-1=b-1, dcd=ac, ece-1=bc, de=ed >
Subgroups: 264 in 109 conjugacy classes, 34 normal (12 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4×C8, Q8⋊C4, C4⋊C8, C2.D8, C4×D4, C4×Q8, C22.D4, C4.4D4, C4⋊1D4, C4⋊Q8, C2×SD16, Q8⋊C8, C4.D8, C4.Q16, C8⋊5D4, C22.53C24, C42.191C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C22≀C2, C4○D8, C8.C22, D4.7D4, D4⋊4D4, C42.191C23
Character table of C42.191C23
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | -2 | 0 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 2 | 0 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | 0 | 0 | -√2 | √2 | complex lifted from C4○D8 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | √2 | -√2 | 0 | 0 | complex lifted from C4○D8 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √2 | -√2 | 0 | 0 | complex lifted from C4○D8 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | 0 | 0 | √2 | -√2 | complex lifted from C4○D8 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√2 | √2 | 0 | 0 | complex lifted from C4○D8 |
ρ20 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | -√2 | √2 | 0 | 0 | complex lifted from C4○D8 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | 0 | 0 | -√2 | √2 | complex lifted from C4○D8 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | 0 | 0 | √2 | -√2 | complex lifted from C4○D8 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
ρ24 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
ρ25 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 18 15 5)(2 19 16 6)(3 20 13 7)(4 17 14 8)(9 62 56 59)(10 63 53 60)(11 64 54 57)(12 61 55 58)(21 31 33 26)(22 32 34 27)(23 29 35 28)(24 30 36 25)(37 44 45 50)(38 41 46 51)(39 42 47 52)(40 43 48 49)
(1 39 3 37)(2 38 4 40)(5 42 7 44)(6 41 8 43)(9 36 11 34)(10 35 12 33)(13 45 15 47)(14 48 16 46)(17 49 19 51)(18 52 20 50)(21 53 23 55)(22 56 24 54)(25 57 27 59)(26 60 28 58)(29 61 31 63)(30 64 32 62)
(2 4)(5 18)(6 17)(7 20)(8 19)(9 53)(10 56)(11 55)(12 54)(14 16)(21 33)(22 36)(23 35)(24 34)(25 27)(30 32)(37 40)(38 39)(41 52)(42 51)(43 50)(44 49)(45 48)(46 47)(57 58)(59 60)(61 64)(62 63)
(1 29 3 31)(2 25 4 27)(5 35 7 33)(6 24 8 22)(9 46 11 48)(10 39 12 37)(13 26 15 28)(14 32 16 30)(17 34 19 36)(18 23 20 21)(38 54 40 56)(41 64 43 62)(42 58 44 60)(45 53 47 55)(49 59 51 57)(50 63 52 61)
G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,18,15,5)(2,19,16,6)(3,20,13,7)(4,17,14,8)(9,62,56,59)(10,63,53,60)(11,64,54,57)(12,61,55,58)(21,31,33,26)(22,32,34,27)(23,29,35,28)(24,30,36,25)(37,44,45,50)(38,41,46,51)(39,42,47,52)(40,43,48,49), (1,39,3,37)(2,38,4,40)(5,42,7,44)(6,41,8,43)(9,36,11,34)(10,35,12,33)(13,45,15,47)(14,48,16,46)(17,49,19,51)(18,52,20,50)(21,53,23,55)(22,56,24,54)(25,57,27,59)(26,60,28,58)(29,61,31,63)(30,64,32,62), (2,4)(5,18)(6,17)(7,20)(8,19)(9,53)(10,56)(11,55)(12,54)(14,16)(21,33)(22,36)(23,35)(24,34)(25,27)(30,32)(37,40)(38,39)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(57,58)(59,60)(61,64)(62,63), (1,29,3,31)(2,25,4,27)(5,35,7,33)(6,24,8,22)(9,46,11,48)(10,39,12,37)(13,26,15,28)(14,32,16,30)(17,34,19,36)(18,23,20,21)(38,54,40,56)(41,64,43,62)(42,58,44,60)(45,53,47,55)(49,59,51,57)(50,63,52,61)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,18,15,5)(2,19,16,6)(3,20,13,7)(4,17,14,8)(9,62,56,59)(10,63,53,60)(11,64,54,57)(12,61,55,58)(21,31,33,26)(22,32,34,27)(23,29,35,28)(24,30,36,25)(37,44,45,50)(38,41,46,51)(39,42,47,52)(40,43,48,49), (1,39,3,37)(2,38,4,40)(5,42,7,44)(6,41,8,43)(9,36,11,34)(10,35,12,33)(13,45,15,47)(14,48,16,46)(17,49,19,51)(18,52,20,50)(21,53,23,55)(22,56,24,54)(25,57,27,59)(26,60,28,58)(29,61,31,63)(30,64,32,62), (2,4)(5,18)(6,17)(7,20)(8,19)(9,53)(10,56)(11,55)(12,54)(14,16)(21,33)(22,36)(23,35)(24,34)(25,27)(30,32)(37,40)(38,39)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(57,58)(59,60)(61,64)(62,63), (1,29,3,31)(2,25,4,27)(5,35,7,33)(6,24,8,22)(9,46,11,48)(10,39,12,37)(13,26,15,28)(14,32,16,30)(17,34,19,36)(18,23,20,21)(38,54,40,56)(41,64,43,62)(42,58,44,60)(45,53,47,55)(49,59,51,57)(50,63,52,61) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,18,15,5),(2,19,16,6),(3,20,13,7),(4,17,14,8),(9,62,56,59),(10,63,53,60),(11,64,54,57),(12,61,55,58),(21,31,33,26),(22,32,34,27),(23,29,35,28),(24,30,36,25),(37,44,45,50),(38,41,46,51),(39,42,47,52),(40,43,48,49)], [(1,39,3,37),(2,38,4,40),(5,42,7,44),(6,41,8,43),(9,36,11,34),(10,35,12,33),(13,45,15,47),(14,48,16,46),(17,49,19,51),(18,52,20,50),(21,53,23,55),(22,56,24,54),(25,57,27,59),(26,60,28,58),(29,61,31,63),(30,64,32,62)], [(2,4),(5,18),(6,17),(7,20),(8,19),(9,53),(10,56),(11,55),(12,54),(14,16),(21,33),(22,36),(23,35),(24,34),(25,27),(30,32),(37,40),(38,39),(41,52),(42,51),(43,50),(44,49),(45,48),(46,47),(57,58),(59,60),(61,64),(62,63)], [(1,29,3,31),(2,25,4,27),(5,35,7,33),(6,24,8,22),(9,46,11,48),(10,39,12,37),(13,26,15,28),(14,32,16,30),(17,34,19,36),(18,23,20,21),(38,54,40,56),(41,64,43,62),(42,58,44,60),(45,53,47,55),(49,59,51,57),(50,63,52,61)]])
Matrix representation of C42.191C23 ►in GL4(𝔽17) generated by
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 1 | 2 |
0 | 0 | 16 | 16 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
12 | 5 | 0 | 0 |
5 | 5 | 0 | 0 |
0 | 0 | 0 | 7 |
0 | 0 | 12 | 0 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 16 | 16 |
13 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 0 | 13 |
G:=sub<GL(4,GF(17))| [0,16,0,0,1,0,0,0,0,0,1,16,0,0,2,16],[0,16,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[12,5,0,0,5,5,0,0,0,0,0,12,0,0,7,0],[1,0,0,0,0,16,0,0,0,0,1,16,0,0,0,16],[13,0,0,0,0,4,0,0,0,0,13,0,0,0,0,13] >;
C42.191C23 in GAP, Magma, Sage, TeX
C_4^2._{191}C_2^3
% in TeX
G:=Group("C4^2.191C2^3");
// GroupNames label
G:=SmallGroup(128,362);
// by ID
G=gap.SmallGroup(128,362);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,422,184,1123,570,521,136,2804,1411,718,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=d^2=1,c^2=e^2=a^2,a*b=b*a,c*a*c^-1=d*a*d=a^-1,e*a*e^-1=a*b^2,c*b*c^-1=d*b*d=e*b*e^-1=b^-1,d*c*d=a*c,e*c*e^-1=b*c,d*e=e*d>;
// generators/relations
Export